330 research outputs found

    3D simulations of pillars formation around HII regions: the importance of shock curvature

    Full text link
    Radiative feedback from massive stars is a key process to understand how HII regions may enhance or inhibit star formation in pillars and globules at the interface with molecular clouds. We aim to contribute to model the interactions between ionization and gas clouds to better understand the processes at work. We study in detail the impact of modulations on the cloud-HII region interface and density modulations inside the cloud. We run three-dimensional hydrodynamical simulations based on Euler equations coupled with gravity using the HERACLES code. We implement a method to solve ionization/recombination equations and we take into account typical heating and cooling processes at work in the interstellar medium and due to ionization/recombination physics. UV radiation creates a dense shell compressed between an ionization front and a shock ahead. Interface modulations produce a curved shock that collapses on itself leading to stable growing pillar-like structures. The narrower the initial interface modulation, the longer the resulting pillar. We interpret pillars resulting from density modulations in terms of the ability of these density modula- tions to curve the shock ahead the ionization front. The shock curvature is a key process to understand the formation of structures at the edge of HII regions. Interface and density modulations at the edge of the cloud have a direct impact on the morphology of the dense shell during its formation. Deeper in the cloud, structures have less influence due to the high densities reached by the shell during its expansion.Comment: Accepted by A&A 03/11/201

    NG7538 IRS1 N: modeling a circumstellar maser disk

    Full text link
    We present an edge-on Keplerian disk model to explain the main component of the 12.2 and 6.7 GHz methanol maser emission detected toward NGC7538-IRS1 N. The brightness distribution and spectrum of the line of bright masers are successfully modeled with high amplification of background radio continuum emission along velocity coherent paths through a maser disk. The bend seen in the position-velocity diagram is a characteristic signature of differentially rotating disks. For a central mass of 30 solar masses, suggested by other observations, our model fixes the masing disk to have inner and outer radii of about 270 AU and 750 AU.Comment: To appear in The Proceedings of the 2004 European Workshop: "Dense Molecular Gas around Protostars and in Galatic Nuclei", Eds. Y. Hagiwara, W.A. Baan, H.J. van Langevelde, 2004, a special issue of ApSS, Kluwe

    PDF model based on Langevin equation for polydispersed two-phase flows applied to a bluff-body gas-solid flow,

    Full text link
    The aim of the paper is to discuss the main characteristics of a complete theoretical and numerical model for turbulent polydispersed two-phase flows, pointing out some specific issues. The theoretical details of the model have already been presented [Minier and Peirano, Physics Reports, Vol. 352/1-3, 2001 ]. Consequently, the present work is mainly focused on complementary aspects, that are often overlooked and that require particular attention. In particular, the following points are analysed : the necessity to add an extra term in the equation for the velocity of the fluid seen in the case of twoway coupling, the theoretical and numerical evaluations of particle averages and the fulfilment of the particle mass-continuity constraint. The theoretical model is developed within the PDF formalism. The important-physical choice of the state vector variables is first discussed and the model is then expressed as a stochastic differential equation (SDE) written in continuous time (Langevin equations) for the velocity of the fluid seen. The interests and limitations of Langevin equations, compared to the single-phase case, are reviewed. From the numerical point of view, the model corresponds to an hybrid Eulerian/Lagrangian approach where the fluid and particle phases are simulated by different methods. Important aspects of the Monte Carlo particle/mesh numerical method are emphasised. Finally, the complete model is validated and its performance is assessed by simulating a bluff-body case with an important recirculation zone and in which two-way coupling is noticeable.Comment: 23 pages, 10 figure

    A search for 85.5- and 86.6-GHz methanol maser emission

    Full text link
    We have used the Australia Telescope National Facility Mopra 22m millimetre telescope to search for emission from the 85.5-GHz and 86.6-GHz transitions of methanol. The search was targeted towards 22 star formation regions which exhibit maser emission in the 107.0-GHz methanol transition, as well as in the 6.6-GHz transition characteristic of class II methanol maser sources. A total of 22 regions were searched at 85.5 GHz resulting in 5 detections, of which 1 appears to be a newly discovered maser. For the 86.6-GHz transition observations were made of 18 regions which yielded 2 detections, but no new maser sources. This search demonstrates that emission from the 85.5- and 86.6-GHz transitions is rare. Detection of maser emission from either of these transitions therefore indicates the presence of special conditions, different from those in the majority of methanol maser sources. We have observed temporal variability in the 86.6-GHz emission towards 345.010+1.792, which along with the very narrow line width, confirms that the emission is a maser in this source. We have combined our current observations with published data for the 6.6-, 12.1-, 85.5-, 86.6-, 107.0-, 108.8- and 156.6-GHz transitions for comparison with the maser model of Sobolev & Deguchi (1994). This has allowed us to estimate the likely ranges of dust temperature, gas density, and methanol column density, both for typical methanol maser sources and for those sources which also show 107.0-GHz emission.Comment: 11 pages, accepted for publication in MNRAS, Latex, mn2e.cl

    VLBA imaging of a periodic 12.2 GHz methanol maser flare in G9.62+0.20E

    Full text link
    The class II methanol maser source G9.62+0.20E undergoes periodic flares at both 6.7 and 12.2 GHz. The flare starting in 2001 October was observed at seven epochs over three months using the VLBA at 12.2 GHz. High angular resolution images (beam size \sim 1.7 x 0.6 mas) were obtained, enabling us to observe changes in 16 individual maser components. It was found that while existing maser spots increased in flux density, no new spots developed and no changes in morphology were observed. This rules out any mechanism which disturbs the masing region itself, implying that the flares are caused by a change in either the seed or pump photon levels. A time delay of 1--2 weeks was observed between groups of maser features. These delays can be explained by light travel time between maser groups. The regularity of the flares can possibly be explained by a binary system.Comment: 11 pages, accepted for publication in MNRA

    Pillars And Globules At The Edges Of H Ii Regions: Confronting Herschel Observations And Numerical Simulations

    Get PDF
    Herschel far-infrared imaging observations have revealed the density structure of the interface between H ii regions and molecular clouds in great detail. In particular, pillars and globules are present in many high-mass star-forming regions, such as the Eagle nebula (M 16) and the Rosette molecular cloud, and understanding their origin will help characterize triggered star formation

    Ionization Compression Impact On Dense Gas Distribution And Star Formation - Probability Density Functions Around H Ii Regions As Seen By Herschel

    Get PDF
    Aims. Ionization feedback should impact the probability distribution function (PDF) of the column density of cold dust around the ionized gas. We aim to quantify this effect and discuss its potential link to the core and initial mass function (CMF/IMF)

    Physical characterisation of southern massive star-forming regions using Parkes NH3_3 observations

    Full text link
    We have undertaken a Parkes ammonia spectral line study, in the lowest two inversion transitions, of southern massive star formation regions, including young massive candidate protostars, with the aim of characterising the earliest stages of massive star formation. 138 sources from the submillimetre continuum emission studies of Hill et al., were found to have robust (1,1) detections, including two sources with two velocity components, and 102 in the (2,2) transition. We determine the ammonia line properties of the sources: linewidth, flux density, kinetic temperature, NH3_3 column density and opacity, and revisit our SED modelling procedure to derive the mass for 52 of the sources. By combining the continuum emission information with ammonia observations we substantially constrain the physical properties of the high-mass clumps. There is clear complementarity between ammonia and continuum observations for derivations of physical parameters. The MM-only class, identified in the continuum studies of Hill et al., display smaller sizes, mass and velocity dispersion and/or turbulence than star-forming clumps, suggesting a quiescent prestellar stage and/or the formation of less massive stars.Comment: 20 pages, 9 Figures, 1 appendix (to appear in full online only, a sample appendix in the paper); 7 tables. Accepted by MNRA

    How do methanol masers manage to appear in the youngest star vicinities and isolated molecular clumps?

    Full text link
    General characteristics of methanol (CH3OH) maser emission are summarized. It is shown that methanol maser sources are concentrated in the spiral arms. Most of the methanol maser sources from the Perseus arm are associated with embedded stellar clusters and a considerable portion is situated close to compact HII regions. Almost 1/3 of the Perseus Arm sources lie at the edges of optically identified HII regions which means that massive star formation in the Perseus Arm is to a great extent triggered by local phenomena. A multiline analysis of the methanol masers allows us to determine the physical parameters in the regions of maser formation. Maser modelling shows that class II methanol masers can be pumped by the radiation of the warm dust as well as by free-free emission of a hypercompact region hcHII with a turnover frequency exceeding 100 GHz. Methanol masers of both classes can reside in the vicinity of hcHIIs. Modelling shows that periodic changes of maser fluxes can be reproduced by variations of the dust temperature by a few percent which may be caused by variations in the brightness of the central young stellar object reflecting the character of the accretion process. Sensitive observations have shown that the masers with low flux densities can still have considerable amplification factors. The analysis of class I maser surveys allows us to identify four distinct regimes that differ by the series of their brightest lines.Comment: 8 pages, 4 figures, invited presentation at IAU242 "Astrophysical Masers and their environments
    corecore